Cogénération

Un article de Wikipédia, l'encyclopédie libre.

La cogénération (ou « co-génération ») est un système de production d'énergie à haut rendement (80% à 90% en général).

Centrale locale de cogénération de Masnedø(Danemark), produisant de l'électricité et de la chaleur pour un réseau local, à partir de paille
Centrale locale de cogénération de Masnedø(Danemark), produisant de l'électricité et de la chaleur pour un réseau local, à partir de paille
Pour le chauffage de bâtiments ou serres, il est bien plus rentable de transporter de l'eau chaude ou de la vapeur dans un réseau de chaleur que de produire, transporter et reconvertir en chaleur de l'électricité, mais la cogénération a néanmoins aussi permis en amont de produire de l'électricité
Pour le chauffage de bâtiments ou serres, il est bien plus rentable de transporter de l'eau chaude ou de la vapeur dans un réseau de chaleur que de produire, transporter et reconvertir en chaleur de l'électricité, mais la cogénération a néanmoins aussi permis en amont de produire de l'électricité
Unité de cogénération d'une usine de sucre de canne valorisant un déchet (la bagasse) comme combustible près de Saint-Louis (Île de la Réunion). Du gaz de méthanisation aurait aussi pu être utilisé en produisant un résidu utile comme amendement. Ici la matière organique et les minéraux sont en grande partie perdus pour le sol
Unité de cogénération d'une usine de sucre de canne valorisant un déchet (la bagasse) comme combustible près de Saint-Louis (Île de la Réunion). Du gaz de méthanisation aurait aussi pu être utilisé en produisant un résidu utile comme amendement. Ici la matière organique et les minéraux sont en grande partie perdus pour le sol

Dans les applications industrielles pointues, le rendement peut dépasser 95% voire approcher 100%. Une installation de cogénération bien conçue offre des rendements supérieurs à ceux de n'importe quelle chaudière classique. La cogénération fait partie des techniques les plus efficaces énergétiquement pour l'utilisation des énergies fossiles et renouvelables.

Sommaire

[modifier] Principe de la cogénération

Il est contenu dans son nom : elle consiste à produire, à partir d'une énergie primaire combustible, deux énergies secondaires utilisables : une énergie mécanique ou électrique et une énergie thermique.

Alors que dans une centrale électrique, c'est le rendement électrique maximum qui est recherché (rendement électrique de l'ordre de 40% avec un cycle simple et atteignant 55% avec un cycle combiné), dans la cogénération, on vise un rendement global accru par l'utilisation prioritaire de l'énergie thermique, soit dans un processus industriel soit dans une chaufferie ; la co-génération d'électricité (ou de force) n'est plus dans ce cas le but mais une conséquence, améliorant le bilan économique de l'équipement dont le rendement global peut alors atteindre 90%.

L'énergie électrique est obtenue par conversion de l'énergie mécanique produite par une turbine ou moteur à gaz, ou turbine à vapeur. Cette conversion est obtenue en couplant une dynamo (courant continu) ou un alternateur (courant alternatif) à la turbine. Le rendement de conversion mécanique/électrique est d'environ 98%. Dans des applications de recherche, la production électrique peut également provenir d'une pile à combustible.

Dans un équipement de cogénération, l'énergie électrique est soit autoconsommée, soit réinjectée sur le réseau électrique public de transport (haute tension) ou distribution (moyenne tension) (en France EDF ou Entreprises locales de distribution d'électricité ), suivant des conditions économiques fixées par les pouvoirs publics.

L'énergie thermique sert le plus souvent au chauffage de bâtiments et/ou à la production d'eau chaude sanitaire ou à des procédés industriels.

[modifier] Énergie primaire

L'énergie primaire est l'énergie contenue dans un combustible utilisable dans les moteurs et les turbines : essence, fioul, bois, gaz, biogaz, gaz "fatal" produit par certaines industries (souvent détruit, par exemple gaz des torchères industrielles chimiques et pétrolières), hydrogène, etc.

[modifier] Génération électrique

L'électricité est produite par la conversion de l'énergie mécanique du moteur ou de la turbine, au travers d'un alternateur, selon le principe du groupe électrogène. Elle peut également être directement produite par une pile à combustible. Selon la puissance concernée, l'électricité est produite à une tension allant de 220-230 V (application domestique en Europe), en passant par 400 V (réseau basse tension triphasé) jusqu'à 15 kV voire plus sur certaines très grosses unités à cycle combiné.

Suivant les besoins, la tension sera éventuellement élevée au travers d'un transformateur.

[modifier] Génération thermique

Un moteur possède un rendement électrique d'environ 40 à 45%, une turbine, un rendement électrique d'environ 35 à 40%, et celui d'une pile à combustible se situe aux alentours de 20 à 30%. La quasi-totalité du solde de l'énergie consommée est transformée en chaleur.

La cogénération consiste à récupérer au mieux cette énergie, afin de la valoriser pour atteindre un rendement total pouvant aller jusqu'à 80-90%. Ceci implique une production locale par de petites unités. En effet une production électrique de, par exemple 1 GW, implique la dissipation d'environ 2 GW de chaleur. Il s'agit de la puissance permettant théoriquement de chauffer, soit 57000 logements de 100 m2 construits avant 1975, soit 100 000 logements plus récents, (toujours de 100 m2). En pratique, comme la chaleur se transporte beaucoup moins bien que l'électricité, elle est souvent considérée comme un déchet industriel. Lorsque, grâce a la cogénération, cette option peut être évitée, les principaux moyens d'utilisation de cette énergie sont la production d'air chaud, la production d'eau chaude et la production de vapeur.

Dans le cas de turbine à gaz comme de moteurs à combustion, il est possible de récupérer une partie de la chaleur en sortie sous forme de vapeur haute pression et température. L'utilisation de cette vapeur au travers d'une turbine à vapeur permet d'accroître fortement la production électrique de l'ensemble et atteindre un rendement électrique de l'ordre de 55%. Cette technique de production électrique s'appelle le cycle combiné. Elle sert en France de référence pour le calcul des tarifs de revente à EDF de la production électrique des cogénérations. Ces tarifs de revente dépendent aussi de nombreux autres critères et sont définis en France par un arrêté régulièrement mis à jour.

Ces techniques de récupération sont valables s'il y a localement un besoin important de chaleur et d'électricité (à proximité de ville ou de grosse industrie).

[modifier] Cogénération par moteur

Les moteurs de cogénération sont disponibles dans une gamme de puissance allant de quelques dizaines de kW à environ 3 MW. Ce sont donc surtout les petites installations et les applications domestiques qui sont concernées par ce type de technologie. Leurs rendements électriques se situent généralement entre 30 et 40 %.

Un moteur produit en part à peu près égales 2 types d'énergie thermique :

  • une énergie "basse température" (environ 95°C), récupérée sur les huiles et les eaux de refroidissement
  • une énergie "haute température" (environ 450°C), sur les gaz d'échappement

L'utilisation pratique de cette chaleur est tout un problème, en particulier dû aux différents niveaux de température. En plus, la chaleur est disponible à des températures assez basses, avec comme conséquence que la chaleur est généralement produite sous forme d'eau chaude. La production de vapeur n'est cependant pas exclue pour des moteurs, mais limite la récupération de chaleur.

Récupération de chaleur sur un moteur à gaz
Récupération de chaleur sur un moteur à gaz

La forte proportion d'énergie basse température implique, pour obtenir un bon rendement, d'avoir à disposition une utilisation sous forme d'air ou d'eau chaude, tels que par exemple des réseaux de chauffage urbain ou industriel.

  • En cas de surplus de chaleur, celui-ci peut être évacué par des tours de réfrigération, qui renvoient la chaleur directement dans l'atmosphère. Mais cette solution n'est pas très respectueuse de l'environnement. Une alternative consiste à stocker le surplus de chaleur pour pouvoir le redistribuer plus tard selon les besoins, par exemple par hydro-accumulation.

Les moteurs de petite puissance sont jusqu'à présent peu rentables (notamment pour un usage domestique ou dans les PME), leur coût d'achat et d'entretien ne permettant pas souvent de rentabiliser de tels investissements. La hausse continue du coût des énergies primaires pourrait changer les choses à moyen terme.

Il existe cependant une petite unite de cogénération (eau chaude et électricité), baptisée WhisperGen, qui exploite le moteur Stirling, un moteur à haut rendement. Le WhisperGen tourne au gaz naturel (ou au gazole sur les groupes pour bateau). Cette technologie néozélandaise de la taille d’un lave-vaisselle est actuellement distribuée au Royaume-Uni par Powergen E.ON, deuxième fournisseur d’électricité et de gaz. Son rendement combiné est très élevé (plus de 90% d'après le constructeur). L’électricité produite non consommée peut être redirigée vers le réseau et rachetée par Powergen E.ON. Comme toute nouvelle technologie, le WhisperGen est encore cher (4 400 €, installation et TVA comprises) mais son prix devrait baisser au fur et à mesure de sa production.

[modifier] Cogénération par turbine à combustion

Turbine à combustion
Turbine à combustion

Les turbines à combustion sont disponibles dans une gamme de puissance allant de quelques dizaines de kW à plusieurs dizaines de MW. Leur rendement électrique varie entre 25 et 40% en fonction de la puissance.

Traditionnellement, le terme turbine à gaz n'indique pas uniquement la turbine d'expansion, mais l'ensemble compresseur - chambre de combustion - turbine.

Le process thermodynamique d'une turbine à gaz est caractérisée par le cycle de Brayton. De l'air atmosphérique est aspiré et comprimé dans un compresseur. Dans la chambre de combustion, un combustible est injecté dans cet air comprimé et est brûlé. Les gaz de combustion chauds et à haute pression sont détendus dans une turbine qui fournit un travail mécanique. Ce travail est transformé en énergie électrique à l'aide d'un alternateur. À l'échappement, les gaz contiennent toujours beaucoup de chaleur. Ils sont donc dirigés vers une chaudière de récupération, où leur énergie thermique sera transmise à un fluide caloporteur (généralement de l'eau).

Les turbines produisent la plus grosse part de leur énergie thermique (hors pertes par rayonnement) sous forme d'un gaz d'échappement à environ 500°C. Le gaz d'échappement peut être injecté directement dans une chaudière ou dans un four industriel, comme s'il s'agissait de gaz produit par un brûleur classique. Lorsque ce gaz vient en appoint d'un brûleur, le complément d'énergie apporté est entièrement consommé par le système utilisateur, le rendement de récupération sur l'échappement de la turbine est alors quasiment de 100%.

Ce gaz contenant encore une forte proportion d'oxygène, il est possible selon les besoins de réaliser une "post-combustion" de ce gaz, en y injectant un supplément de combustible en aval de la turbine, afin d'élever sa température jusqu'à parfois 900°C.

Les turbines permettent ainsi de produire de la vapeur à très haute température, qui peut être utilisée industriellement, ou dans l'optique d'un cycle combiné. L'utilisation de la post-combustion étant indépendante du fonctionnement de la turbine, cela permet d'assurer le plein régime à la turbine du point de vue électrique, et de moduler la post-combustion selon les besoins thermiques de l'utilisateur.

Les micro-turbines de quelques dizaines de kW, de même que pour les petits moteurs, ne trouveront leur plein essor qu'avec l'augmentation du coût des énergies primaires.

[modifier] Cogénération par turbine à vapeur

Turbine à Vapeur
Turbine à Vapeur

Cette technique, réservée aux industriels pouvant produire de grandes quantités de vapeur, permet de produire de l'électricité lorsque de la vapeur est produite en excédent, permettant de régulariser sa consommation, par conversion énergétique. C'est aussi la principale technique utilisée dans les grosses centrales électriques, nucléaires ou à combustibles fossiles, pour convertir l'énergie thermique du combustible en électricité.

La cogénération par turbine à vapeur permet d'utiliser des sources d'énergie primaires variées, dont entre autres les sources d'énergie diverses issues de la valorisation des déchets de l'industrie, tels que les déchets de bois dans les scieries, où les déchets végétaux de l'agriculture.

Le cycle thermodynamique des turbines à vapeur est basée sur le cycle de Rankine. A l'aide de la chaleur dégagée par la combustion d'un combustible, on produit de la vapeur à haute pression dans une chaudière. Cette vapeur est ensuite dirigée vers une turbine, où en se détendant, entraîne la turbine. Sortie de la turbine, la vapeur est condensée et ramenée à la chaudière, où ce cycle recommence. Dans ce cycle, la combustion est externe : c’est-à-dire qu'il n'y a pas de contact direct entre le fluide process (vapeur) et le foyer. Ainsi le combustible ne requiert pas de spécifications de qualités précises et donc tout combustible peut être employé.

[modifier] Cycle combiné

On peut aussi combiner turbine à vapeur et turbine à gaz. Comme dit précédemment, la turbine à gaz peut produire de la vapeur à travers une chaudière de récupération, avec ou sans co-combustion. Cette vapeur peut aussi entraîner une turbine à vapeur au lieu d'être employée directement dans un process, et avec un alternateur placé sur l'axe de la turbine à vapeur, on peut ainsi produire un complément d'électricité. La demande en chaleur peut être assouvie par de la vapeur à la sortie de la turbine. Il est évident que de pareilles configurations permettent un haut rendement électrique, ce qui se traduit par un rendement thermique plus faible.

[modifier] Trigénération

La trigénération est une extension de la cogénération, avec production d'une troisième catégorie d'énergie, en général du froid. Ce froid peut être produit mécaniquement, par utilisation directe de l'énergie mécanique du moteur ou de la turbine, il peut également être produit indirectement au travers par exemple d'un groupe à absorption.

[modifier] Pile à combustible

La cogénération par pile à combustible semble être une voie prometteuse. Cette technologie, si elle existe sur son principe depuis 1839, inventée par Sir William Grove, n'est toujours pas arrivée à maturité. La technologie permet d'envisager des applications tant domestiques (chauffage et production électrique des maisons individuelles) qu'industrielles. Le rendement est meilleur que celui de la cogénération par moteur ou turbine et la pollution moindre.

Certaines piles à combustible sont réversibles, et peuvent donc produire leur propre carburant et le stocker, par exemple à partir d'énergie électrique d'origine solaire ou autre, lorsque qu'elle n'est pas utilisée en production.

Les freins actuels au développement de la pile à combustible relèvent principalement du coût de fabrication des piles, de la fiabilité des équipements et de la maintenance des systèmes.

L'augmentation du coût des énergies primaires devrait fortement encourager l'utilisation de cette technologie.

[modifier] Avantages

  • Le rendement d’une centrale de production électrique, qu'elle fonctionne au combustible nucléaire, au fioul ou au charbon, ne dépasse guère les 40%, le reste de l'énergie produite étant dispersée dans l'environnement (cours d'eau, atmosphère) sous forme de chaleur. La cogénération fait donc une meilleure utilisation de l'énergie primaire contenue dans le combustible.
  • Nous savons que les réserves de combustibles fossiles sont limitées et nous devons donc en faire usage avec parcimonie. La cogénération amène alors à faire des économies d'énergie fossile grâce à sa meilleure utilisation de l'énergie primaire du combustible.
  • Le transport sur de longues distances de l'énergie électrique produite de façon centralisée génère d'importantes pertes supplémentaires "en ligne", par effet Joule, et implique des infrastructures coûteuses, polluantes visuellement.
  • La cogénération, lorsqu'elle se substitue à une production d'énergie à partir de pétrole ou de gaz, limite l’émission des polluants et de gaz à effet de serre dans l’atmosphère.

[modifier] Exemple de rendement comparé

Une turbine à gaz équipée d'une chaudière de récupération peut produire environ 35 mégajoules d'électricité et 50 mégajoules de chaleur à partir de 100 MJ de carburant. Si les mêmes quantités de chaleur et d'électricité étaient produites séparément, on consommerait environ 90 MJ de carburant pour le groupe électrogène, (moteur diesel et alternateur, rendement de 39%), plus 55 MJ pour la chaudière, soit 145 au total. Dans cet exemple simplifié, la cogénération permet d'économiser plus de 30% de carburant par rapport à la production séparée.

Aujourd'hui, il existe des centrales au gaz à cycle combiné qui atteignent 58% de rendement. En supposant une chaudière à 95% de rendement, (au lieu de 90% dans l'exemple ci-dessus), la consommation de combustible pour produire la même quantité d'énergie électrique (35 MJ) et de chaleur (50 MJ) est de 113 MJ. Soit un coût énergétique de production de 13% supérieur a celui de la cogénération. (100 MJ par hypothèse)

[modifier] La cogénération en France

La production d'électricité par cogénération a représenté 11% de la production totale d'électricité de l'UE en 1998. Si la part de la cogénération dans la production d'électricité augmentait jusqu'à atteindre 18%, des économies d'énergie pourraient représenter de l'ordre de 3 à 4% de la consommation brute totale de l'UE. (source: Union Européenne)

De fortes inégalités demeurent en Europe. Si la production française d'électricité par cogénération était de 3% en 2000, la production au Danemark était alors supérieure à 50% des besoins électriques du pays. De 2000 à 2003, en l'absence de législation claire concernant les conditions de rachat par EDF, pratiquement aucun projet de cogénération n'a vu le jour en France. La directive 2004/8/CE du Parlement européen et du Conseil du 11 février 2004 concernant la promotion de la cogénération sur la base de la demande de chaleur utile dans le marché intérieur de l'énergie, et l'envolée du coût des énergies fossiles, permettent de supposer que la cogénération prendra plus d'importance en France dans les années à venir.

[modifier] Voir aussi

[modifier] Liens externes

[modifier] Notes et références